

Classifications et propriétés des massifs rocheux

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

■ Laboratoire de Mécanique des Roches – LEMR

Prof. M. VIOLAY

Caractérisation et comportement des discontinuités :

Prof. M. VIOLA

- 1. Introduction
- 2. Classifications
- 3. Propriétés des massifs rocheux

Caractérisation et comportement des discontinuités

1. Introduction

- 2. Classifications
- 3. Propriétés des massifs rocheux

1. Introduction aux propriétés des massifs

Prof M VIOLA

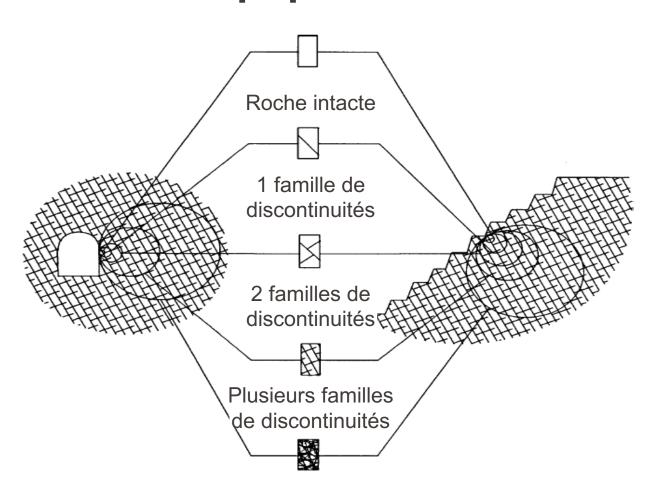
Propriétés du massif rocheux

Le massif rocheux est constitué de roche intacte et de discontinuités. Les propriétés du massif rocheux sont donc tributaires:

- des paramètres des discontinuités,
- des paramètres de la matrice rocheuse,
- des conditions aux limites.

Le comportement du massif peut changer d'un état élastique continu pour une roche intacte à un état discontinu pour les massifs rocheux fracturés, essentiellement en fonction de la présence des discontinuités.

1. Introduction aux propriétés des massifs


Principaux paramètres régissant les propriétés du massif rocheux

Paramètres de la roche intacte	Paramètres des discontinuités	Conditions aux limites
 Résistance à la compression Module d'élasticité 	 Nombre de familles de discontinuités Orientation Espacement Ouverture Rugosité Erosion et altération Résistance au cisaillement (coef de friction) 	 Pression d'eau et écoulement Contraintes in situ Dimensions de l'ouvrage

1. Introduction aux propriétés des massifs

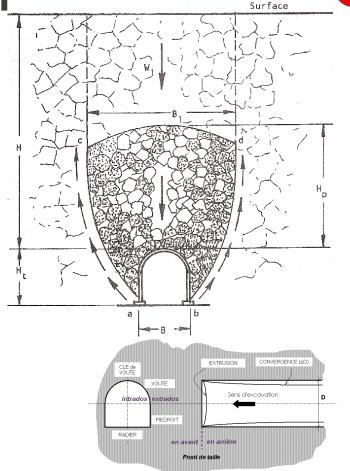
Caractérisation et comportement des discontinuités

Prof. M. VIOLAY

- 1. Introduction
- 2. Classifications

2.1.	Terzaghi	charge de dislocation
------	----------	-----------------------

- 2.2. Lauffer portée active stabilité
- 2.3. Deere indice RQD
- 2.4. Bieniawski *indice RMR*
- 2.5. Barton, Lien et Lunde *indice Q*
- 2.6. Hoek indice GSI
- 2.7. Autres systèmes de classification
- 2.8. Exemples d'application
- 2.9. Corrélations entre classifications
- 3. Propriétés des massifs rocheux


2.1 Classification de Terzaghi

Terzaghi (1946)

Charge de dislocation

Terzaghi classe le massif rocheux en 9 classes. Le concept utilisé dans cette classification permet d'estimer la charge du terrain à reprendre par les cintres métalliques du soutènement du tunnel.

Pression s'exerçant sur le soutènement («charge» de dislocation): $p = \gamma \cdot H_p$ [kN/m²]

MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS

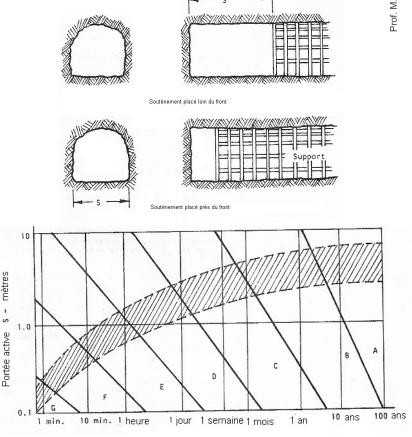
2.1 Classification de Terzaghi

Classe de roche	Définition	Facteur de charge H _p	Remarques
I. Dure et intacte	Roche dure et intacte sans failles ni discontinuités. Après excavation la paroi de la roche peut s'effriter et éclater	0	Soutènement léger s'il y a chute de pierres
II. Dure et stratifiée schistosée	Roche dure en bancs épais. Interface entre les couches cimentées. Fréquents éclats et effritements de la paroi excavée	0 to 0.5 B	Soutènement léger de protection contre les éclats
III. Massive, moyennement discontinue	Roche massive avec des discontinuités largement espacées. Taille des blocs est grande, les discontinuités sont imbriquées Effritement possible	0 to 0.25 B	Soutènement léger de protection contre les éclats
IV. Moyennement fracturée et ébouleuse	Roche avec discontinuités moyennement espacées. Roche n'est pas altérée chimiquement ou physiquement. Discontinuités ne sont pas bien imbriquées et ont de petites ouvertures Effritement possible .Les parois verticales ne nécessitent pas de soutènement	$0.25~B$ to $0.35~(B+H_t)$	Pas de pression latérale
V. Très fracturée et ébouleuse	Roche n'est pas altérée chimiquement, a des discontinuités peu espacées. Discontinuités ouvertes et séparées. Paroi verticale a besoin de support.	$(0.35 \text{ to } 1.1) (B + H_t)$	Peu ou pas de pression latéral
VI. Complètement broyée mais chimiquement intacte	Roche n'est pas altérée chimiquement, et très fracturée avec des fragments. Les fragments ne sont pas imbriqués. Front d'excavation dans ce matériel nécessite un fort soutènement.	$1.1 (B + H_t)$.Forte pression latérale. Effets de radoucissement par l'eau en radier. Cintres circulaires recommandés
VII. Roche poussante à profondeur modérée	Roche avance lentement dans le tunnel sans augmentation notable de volume. Profondeur moyenne entre 150 et 1000 m.	$(1.1 \text{ to } 2.1) (B + H_t)$	Grande pression latérale. Cintres
VIII. Roche poussante à grande profondeur	Roche avance lentement dans le tunnel sans augmentation notable de volume. Profondeur supérieure à 1000 m.	$(2.1 \text{ to } 4.5) (B + H_t)$	circulaires recommandés
IX. Roche gonflante	Augmentation du volume de la roche (et avance dans le tunnel) à cause du gonflement des minéraux argileux dans la roche en présence d'eau.	jusqu'à 75 m, Indépendamment de B and H _t	Cintres circulaires recommandés. Cintres coulissants dans les cas extrêmes,

Notes: Le tunnel est présumé en dessous du niveau hydrostatique. Pour les tunnels situés au-dessus, H_p pour les Classes IV to VI est réduits de 50%. Il est présumé que le tunnel est creusé à l'explosif. Pour les tunnels creusés mécaniquement, H_p pour les Classes II to VI est réduit de 20-25%.

2.1 Classification de Terzaghi

Commentaires sur la classification de Terzaghi


- Son utilisation est plutôt préconisée pour des tunnels à moyenne profondeur avec une hauteur de couverture $H > 1.5 \cdot (B + H_t)$
- Elle fournit une évaluation raisonnable de la pression s'exerçant sur le soutènement pour des tunnels de petit diamètre allant jusqu'à 6 mètres.
- On obtient une surestimation de la pression sur le soutènement dans le cas de tunnels dont le diamètre dépasse 6 mètres (Singh & Goel, 1999).

Portée active et temps de tenue

La portée active S est la plus grande dimension non soutenue dans le tunnel.

Le temps de tenue est la durée pendant laquelle une excavation peut tenir sans soutènement.

Les classes de roche sont définies en fonction du temps de tenue.

2.3 Classification de Deere

Deere (1964)

Indice de qualité (RQD)

Le RQD (Rock Quality Designation) est défini comme le pourcentage des carottes de roche qui ont une longueur supérieure ou égale à 10 cm sur la longueur totale du forage:

RQD =
$$\Sigma L_i / L \times 100\%$$
, $L_i \ge 10 \text{ cm}$

$$L_i \ge 10 \text{ cm}$$

Le RQD représente le degré de fracturation du massif rocheux.

Il reflète partiellement la qualité du massif.

RQD	Qualité du massif
< 25	Très mauvaise
25 – 50	Mauvaise
50 – 75	Moyenne
75 – 90	Bonne
90 – 100	Excellente

RMR

rof. M. VIOLAY

Bieniawski (1973 – 1989) RMR: Rock Mass Rating

Le système RMR comprend 5 paramètres de base.

- Résistance de la roche intacte: résistance à la compression uniaxiale ou indice de résistance ponctuelle;
- 2. RQD;
- 3. Espacement des joints: espacement moyen de toutes les discontinuités rocheuses;
- 4. Conditions des joints: ouverture, rugosité, degré d'altération, remplissage;
- 5. Conditions hydrauliques: écoulement ou pression d'eau.

EPFL

2.4 Classification de Bieniawski

Prof. M. VIOLAY

	Résistance	Indice de résis- tance ponctuelle (MPa)	> 10	4 – 10	2 – 4	1 – 2			
1.	de la matrice	Résistance à la compression uniaxiale (MPa)	> 250	100 – 250	50 – 100	25 – 50	5 – 25	1 – 5	<1
	Note		15	12	7	4	2	1	0

2.	RQD (%) Note	90 – 100 20	75 – 90 17	50 – 75 13	25 – 50 8	< 25 3
ROC						

3.	Espacement (m)	> 2	0.6 – 2	0.2 - 0.6	0.06 - 0.2	< 0.06
	Note	20	15	10	8	5

RMR

Etat des 4. joints	Surfaces non continues, très rugueuses, non altérées, Epontes en contact	Surfaces légèrement rugueuses, légèrement altérées, ouverture <1 mm	Surfaces légèrement rugueuses, très altérées, ouverture <1 mm	Surfaces continues, lustrées, ou remplissage < 5 mm, ou ouverture de 1 à 5 mm	Surfaces continues, remplissage mou > 5 mm, ou ouverture > 5 mm
Note	30	25	20	10	0
	Débit entrant pa	nr 10			

		Débit entrant par 10 m de longueur du tunnel (I /min)	aucun	< 10	10 – 25	25 – 125	> 125
5.	Conditions hydrau- liques	Rapport pression d'eau / contrainte majeure in situ	0	0 – 0.1	0.1 – 0.2	0.2 – 0.5	> 0.5
		Condition générale à la surface de l'excavation	Complète- ment sèche	humide	mouillée	Égout- tement	Écoule- ment
	Note		15	10	7	4	0

Ajustement du RMR pour tenir compte de l'orientation des discontinuités lors de la construction de tunnels (cf. partie ouvrages souterrains)

Tableau 11.9 : Système RMR ; ajustement des notes pour tenir compte de l'orientation des discontinuités

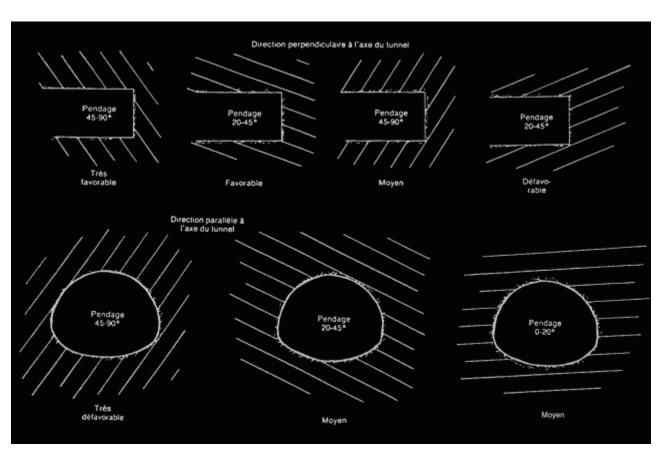

Direction du pendage et des couches		très favorable	favorable	neutre	défavorable	Très défavorable
Note	tunnels	0	-2	- 5	- 10	- 12
	fondations	0	- 2	-7	- 15	- 25
	Pentes	0	- 5	- 25	- 50	- 60

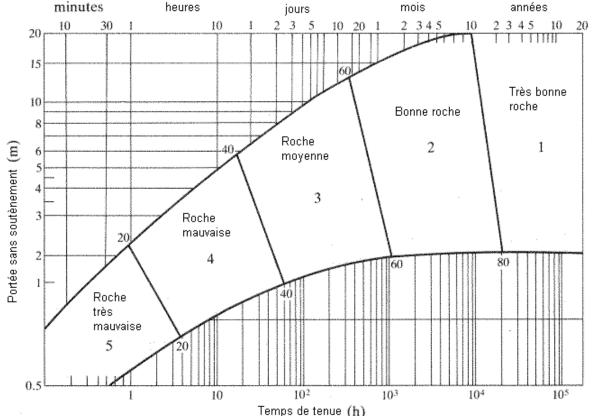
Tableau 11.10 : Système RMR ; effet de l'orientation en construction de tunnel

	Couche perpendicu	laire à l'axe du tunnel	Canaha namilikla	Dandage 0° 20°		
Avancement avec pendage Avancement contre pendage		Couche parallèle à l'axe du tunnel		Pendage 0° – 20°		
Pendage 45° – 90°	Pendage 20° – 45°	Pendage 45° – 90°	Pendage 20° – 45°	Pendage 45° – 90°	Pendage 20° – 45°	Indépendamment des couche
très favorable	favorable	neutre	défavorable	très défavorable	neutre	neutre

RMR

rof. M. VIOLAY

RMR et qualité du massif rocheux


	Notes RMR	81 – 100	61 – 80	41 – 60	21 – 40	< 20
	Classe du massif	Α	В	С	D	E
MÉCANIQUE DES ROCHES ET OUVRAGES SOUTERRAINS	Description	Très bonne roche	Bonne roche	Roche moyenne	Mauvaise roche	Roche très mauvaise
	Temps de tenue moyen	10 ans pour 15 m de portée	6 mois pour 8 m de portée	1 semaine pour 5 m de portée	10 heures pour 2.5 m de portée	30 minutes pour 0.5 m de portée
ES ROCHES E	Cohésion du massif (kPa)	> 400	300 – 400	200 – 300	100 – 200	< 100
■ MÉCANIQUE D	Angle de frottement du massif	> 45°	35° – 45°	25° – 35°	15° – 25°	< 15°

RMR

Portée non soutenue et temps de tenue en fonction du

RMR

MÉCANIOLIE DES BOCHES ET OLIVBAGES SOLITEDBAINS

2.4 Exemple d'application de Bieniawski

- Massif granitique avec 3 familles de joints,
- RQD moyen de 88%,
- espacement moyen des joints de 0.24 m,
- surfaces des joints généralement irrégulières et rugueuses, jointives et non altérées avec quelques taches,
- surface d'excavation humide, mais sans écoulement
- résistance moyenne à la compression uniaxiale de 160 MPa,
- tunnel excavé à 150 m de profondeur, sans état de contrainte in situ anormalement élevé.

Résistance de la roche	Note	
RQD (%)	Note	
Espacement des joints (m)	Note	
Conditions des joints	Note	
Eau souterraine	Note	
	RMR	

Q

Prof. M. VIOLAY

Barton, Lien et Lunde (1974 - ...) Indice de qualité pour les tunnels Q

$$Q = \frac{RQD}{J_n} \cdot \frac{J_r}{J_a} \cdot \frac{J_w}{SRF}$$

3 termes représentant:

- Taille blocs
- Résistance au cisaillement entre blocs
- L'état de contraintes
- RQD : Rock Quality Designation.
- J_n : caractérise le nombre de familles de joints.
- J_r: caractérise la rugosité des joints.
- J_a: caractérise l'altération des joints en précisant le degré d'érosion, d'altération et de remplissage.
- J_w: facteur lié à la pression hydraulique dans les joints.
- SRF : facteur de réduction des contraintes.

Q

RQD

1. Cl	asse de RQD (Rock quality Designation)	RQD
A	Très mauvais	0 - 25
В	Mauvais	25 - 50
C	Moyen	50 - 75
D	Bon	75 - 90
E	Excellent	90 – 100

Note: (a) Quand RQD est noté ou mesuré comme étant ≤ 10 (0 inclus), une valeur nominale de 10 est utilisée pour évaluer Q. (b) Des intervalles de 5 pour RQD, i.e., 100, 95, 90, etc., sont suffisamment précis.

Q

J_n

2. Nombre de familles de discontinuités J		J_n
A	Massif, pas ou peu de discontinuités	0,5 – 1
В	Une famille de discontinuités	2
C	Une famille de discontinuités plus des discontinuités aléatoires	3
D	Deux familles de discontinuités 4	
E	Deux familles de discontinuités plus des discontinuités aléatoires 6	
F	Trois familles de discontinuités 9	
G	Trois familles de discontinuités plus des discontinuités aléatoires 12	
Н	Quatre familles ou plus de discontinuités, 15	
J	Roche écrasée, similaire au sol 20	

Note: (a) Pour les croisements des galeries, adopter $(3,0 \times J_n)$. (b) Pour les têtes d'accès, adopter $(2.0 \times J_n)$.

Jr

3. Ind	${ m J_r}$		
$\overline{(a)}$ E_{I}	pontes en contact, et (b) Epontes en contact après cisaillement de moins de 10 cm		
A	Discontinuités non continues	4	
В	Discontinuités ondulées, rugueuses ou irrégulières,	3	
C	Discontinuités ondulées, lisses	2	
D	Discontinuités ondulées, striées	1,5	
Е	E Discontinuités planes, rugueuses ou irrégulières 1,5		
F	Discontinuités planes, lisses 1,0		
G	6 Discontinuités planes, striées 0,5		
Note	: (a) Les descriptions se réfèrent à des éléments de petites ou moyennes dimensions		
(c) E _I	pontes hors contact après cisaillement		
Н	Zone argileuse d'épaisseur suffisante pour empêcher le contact	1,0	
J	Zone sableuse, graveleuse ou broyée d'épaisseur suffisante pour empêcher le contact	1,0	

Note:

(b) Majorer de 1.0 si l'espacement moyen des discontinuités est ≥ 3 m.

(c) $J_r = 0.5$ si les discontinuités planes et striées comportent des linéations et que celles-ci sont orientées de dans le plan de résistance minimum

Q

 J_a

4. Indi	4. Indice d'altération des discontinuités		J_a
(a) Ep	(a) Epontes en contact		
A	Discontinuité serré, dur, non radoucissant, remplissage étanche (quartz, épidote)	_	0,75
В	Epontes non altérées, taches superficielles seulement	$25-35^{\circ}$	1,0
С	Epontes légèrement altérées, enduit minéral non radoucissant, grain sableux, roche décomposée sans argile	25 – 30°	2,0
D	Enduits d'argile silteuse ou sableuse	$20-25^{\circ}$	3,0
Е	Enduits argileux, radoucissants ou à faible frottement, par ex, kaolinite ou mica. Egalement chlorite, talc, gypse, graphite, etc., and de petites quantité d'argiles gonflants		

EPFL

2.5 Classification de Barton & al.

Q

(b) Contact paroi rocheuse avant 10 cm de cisaillement (remplissage minéraux fin)

F	Particules sableuses, roche désintégrée sans argile, etc.	$25-30^{\circ}$	4,0
G	Remplissage de minéraux d'argile fortement surconsolidé non-radoucissant (continus, mais < 5 mm d'épaisseur)	16 – 24°	6,0
Н	Remplissage de minéraux d'argile moyennement ou peu surconsolidé (continus, mais < 5 mm d'épaisseur)	12 – 16°	8,0
J	Remplissage d'argile gonflants, i.e., montmorillonite (continus, mais < 5 mm épaisseur). Valeurs de Ja dépendent du pourcentage d'argile gonflants, de l'accès à l'eau, etc.	6 – 12°	8 – 12

(c)Aucun contact avec la paroi rocheuse lors du cisaillement (remplissage minéraux épais)

K, L, Zones ou bandes de roche désintégrée ou écrasée et d'argile M (voir G, H, J pour description des argiles concernés)	6 – 24°	6, 8, or 8 – 12
N Zones ou bandes d'argile limoneux ou sableux, petite fraction d'argile (non-radoucissante)	-	5
O, P, RZones ou bandes d'argiles épaisses et continues (voir G, H, J for pour description des argiles concernés)	6 – 24°	10, 13, or 13 - 20

Q

Jw

5. Facto	eur lié à la pression hydraulique	Pression hydraulique	$ m J_w$
A	Excavation à sec ou flux mineur, i.e., < 5 l/min localement	$< 1 \text{ (kg/cm}^2\text{)}$	1,0
В	Flux ou pression faible, débourrage occasionnel au droit d'une discontinuité	1 – 2,5	0,66
С	Flux fort ou pression importante dans du rocher de bonne tenue à discontinuités sans remplissage	2,5 – 10	0,5
D	Flux fort ou pression importante, débourrages fréquents	2,5-10	0,33
Е	Flux ou pression hydraulique très forte lors des tirs, diminuant avec le temps	> 10	0,2 – 0,1
F	Flux ou pression hydraulique très forte sans diminution notable avec le temps	$> 10 \text{ (kg/cm}^2\text{)}$	0,1 – 0,05
Note:	e: (a) Facteurs C à F sont des estimations. Augmenté J _w si drainage installé. (b) Problèmes		

spéciaux liés à la formation de glace ne sont pas considérés

Prof. M. VIOLAY

EPFL

2.5 Classification de Barton & al.

Q

6. Facteur de réduction de contrainte **SRF** Zone de faiblesses croissant l'excavation, ce qui pourrait créer un relâchement de la (a) masse rocheuse quand le tunnel est excavé Occurrences multiple de zones de faiblesses contenant de l'argile ou de la 10 roche désintégrée chimiquement, Roche environnante très décomprimé (toutes profondeurs) Zone de faiblesse unique contenant de l'argile ou de la roche désintégrée 5 chimiquement (profondeur d'excavation ≤ 50 m) Zone de faiblesse unique contenant de l'argile ou de la roche désintégrée 2.5 chimiquement (profondeur d'excavation > 50 m) Zones de cisaillement multiples dans roche compétente (sans argiles) 7.5 (profondeur d'excavation ≤ 50 m) Zones de cisaillement unique roche compétente (sans argiles) (profondeur 5 d'excavation ≤ 50 m) Zones de cisaillement unique roche compétente (sans argiles) (profondeur 2,5 d'excavation > 50 m) Décomprimé, discontinuités ouvertes et nombreuses (toutes profondeurs)

Note: (a) Réduire la valeur de SRF par 25-50% si la zone de cisaillement influence seulement mais n'intersecte pas l'excavation.

σc= contrainte

compression uniaxiale

2.5 Classification de Barton & al.

SRF

 $\sigma\theta$ =contrainte tangentielle

massive

(b) roches	Roche compétente, Problèmes des contraintes des	σ_c / σ_1	σ_{θ} / σ_{c}	SRF
Н	Contrainte faible, proche de la surface, discontinuités ouvertes	> 200	< 0.01	2.5
J	Contrainte moyenne, Condition de contrainte favorable	200 – 10	0,01 – 0,03	1
K	Contrainte élevée, structure très légère. généralement favorable à la stabilité mais pas favorable à la stabilité des parois	10 – 5	0,3 – 0,4	0,5 – 2
L	Décollement moyen de la roche après > 1 heure dans roche massive	5 – 3	0,5 – 0,65	5 – 50
M	Décollement et éclatement après quelques minutes dans roche massive	3 – 2	0,65 – 1	50 – 200
N	Eclatement fort de la roche (strain-burst) et déformation dynamique immédiate dans roche	< 2	> 1	200 – 400

Note: (b) Si l'état de contraintes initiales est fortement anisotrope, si mesurée: pour $5 \le \sigma_1 / \sigma_3 \le$ 10, réduire σ_c to 0.75 σ_c ; pour $\sigma_1 / \sigma_3 > 10$, réduire σ_c to 0.5 σ_c ; où σ_c résistance en compression uniaxiale, σ_1 et σ_3 contraintes principales majeures et mineures, et σ_{θ} résistance en traction (estimé à partir de la théorie élastique. (c) Peu de cas disponible où la hauteur de couverture au dessus du toit soit plus faible que la largeur de l'ouvrage. Il est suggéré d'augmenté SRF de 2,5 à 5 si c'est le cas (voir H).

Q

SRF

(c) Roche poussant: déformation plastique du rocher sous l'action de fortes contraintes naturelles	σ_{θ} / σ_{c}	SRF
O Pression de roche poussante moyenne	1 - 5	5 – 10
P Pression de roche poussante forte	5	10 - 20

Note: (vi) Des cas de roches en compression peuvent se produire à une profondeur $H > 350 Q^{1/3}$. La résistance à la compression simple de la masse rocheuse peut être estimée à partir de $Q = 7 \gamma Q^{1/3}$ (MPa), où $\gamma =$ densité de la roche en g/cm³.

(d) d'eau	Roche gonflante: activité gonflante chimique dépendant de la présence	SRF
R	Pression roche gonflante moyenne	5 – 10
S	Pression de roche gonflante forte	10 - 15

Note: La classification Jr et Ja est appliquée à la famille de discontinuité ou à la discontinuité qui est la moins favorable à la stabilité du point de vue orientation et résistance au cisaillement

Commentaires sur le SRF (Stress Reduction Factor)

 SRF n'est pas assez fin pour le dimensionnement des ouvrages en rocher. Sa valeur couvre en effet une gamme de contraintes trop large.

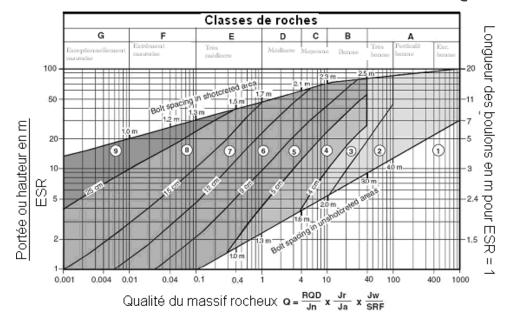
E.g. SRF = 1
$$\rightarrow \sigma_c / \sigma_1 \sim 10 \div 200$$
.

pour une roche avec $\sigma_c = 50$ MPa, la contrainte in situ peut varier de 0.25 à 5 MPa sans influencer le facteur SRF

 L'importance de la contrainte in situ sur la stabilité des ouvrages souterrains n'est pas assez bien prise en compte dans le système de classification Q.

Indice Q et qualité du massif rocheux

Valeur Q	Classe	Qualité du massif rocheux
400 ~ 1000	A++	Exceptionnellement bon
100 ~ 400	A+	Extrêmement bon
40 ~ 100	Α	Très bon
10 ~ 40	В	Bon
4 ~ 10	С	Moyen
1 ~ 4	D	Mauvais
0.1 ~ 1	Е	Très mauvais
0.01 ~ 0.1	F	Extrêmement mauvais
0.001 ~ 0.01	G	Exceptionnellement mauvais


Prof. M. VIOLAY

EPFL

2.5 Classification de Barton & al.

Q

ESR (Excavation Support Ratio) étant un facteur dépendant de la finalité de l'excavation, autrement dit, du degré de sécurité recherché pour la stabilité.

- 1. Non-soutenu
- 2. Boulonnage local
- 3. Boulonnage systématique
- 4. Boulonnage systématique (et béton projeté non armé, 4-10 cm)
- 5. Béton projeté armé de fibres (5-9 cm) et boulonnage

- 6. Béton projeté armé de fibres (9-12 cm) et boulonnage
- 7. Béton projeté armé de fibres (12-15 cm) et boulonnage
- 8. Béton projeté armé de fibres (>15 cm), cintres, boulonnage
- 9. Revêtement en béton coffré

Q

Excavation Support Ratio (ESR)

Catégorie d'excavation		ESR
Α	Ouvertures temporaires dans les mines.	3 – 5
В	Ouvertures permanentes dans les mines, conduites forcées pour usines hydroélectriques, galeries pilote, puits et galeries d'avancement pour grandes excavations.	1.6
С	Chambres de stockage, installations de traitement des eaux, tunnels routiers et ferroviaires d'importance mineure, chambres d'équilibre et tunnels d'accès pour des projets hydro-électriques.	1.3
D	Centrales électriques souterraines, tunnels routiers et ferroviaires d'importance majeure, abris souterrains, portails et intersections de tunnels.	1.0
E	Centrales nucléaires souterraines, stations ferroviaires, aménagements sportifs et publics, usines souterraines.	0.8

2.5 Exemple d'application de Barton & al.

Prof. M. VIOLA

- Massif granitique avec 3 familles de joints,
- RQD moyen de 88%,
- espacement moyen des joints de 0.24 m,
- surfaces des joints généralement irrégulières et rugueuses, jointives et non altérées avec quelques taches,
- surface d'excavation humide, mais sans écoulement
- résistance moyenne à la compression uniaxiale de 160 MPa,
- tunnel excavé à 150 m de profondeur, sans état de contrainte in situ anormalement élevé.

010101		
RQD	RQD	
Nb de famille de joints	J _n	
Facteur rugosité du joint	J _r	
Facteur altération du joint	J _a	
Facteur eau du joint	$J_{\rm w}$	
Facteur de réduction de contrainte	SRF	
	Q	

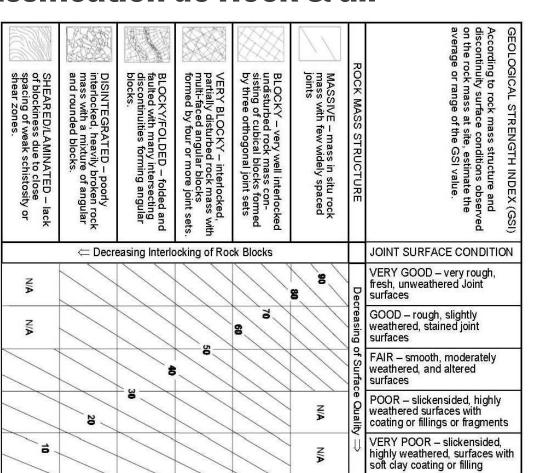
2.6 Classification de Hoek & al.

GSI

Prof. M. VIOL

Hoek (1994) GSI (Geological Strength Index)

L'indice GSI sert à estimer la réduction de résistance du massif rocheux en fonction des conditions géologiques. Le système estime une valeur à partir:


- de la structure du massif rocheux;
- des conditions de surface des discontinuités.

L'application directe de la valeur GSI sert à estimer les paramètres du critère de résistance de Hoek-Brown pour les massifs rocheux.

Prof. M. VIOLAY

2.6 Classification de Hoek & al.

GSI

2.6 Classification de Hoek & al.

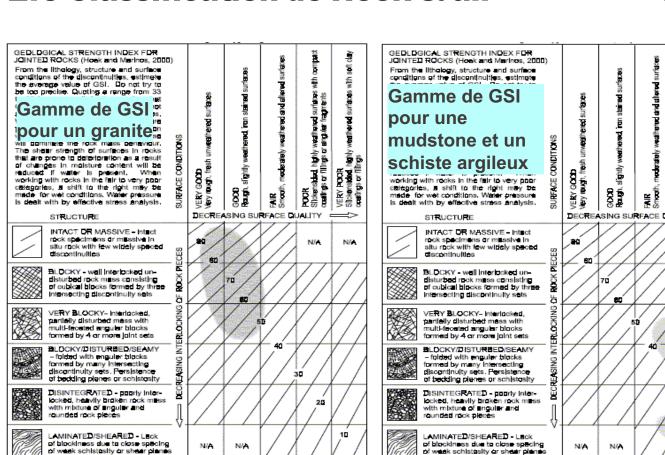
GSI

Description générale de la structure rocheuse dans GSI

Description GSI	Désignation ISRM	J _v [discontinuités/ m ³]	RQD [%]
Fracturée	Blocs moyens à grands	< 10	90 ~ 100
Très fracturée	Blocs petits à moyens	10 - 30	65 ~ 90
Fracturée/Déstructurée/Failles	Blocs très petits à petits	> 30	35 ~ 65
Désintégrée	Roche désintégrée	> 60	< 35

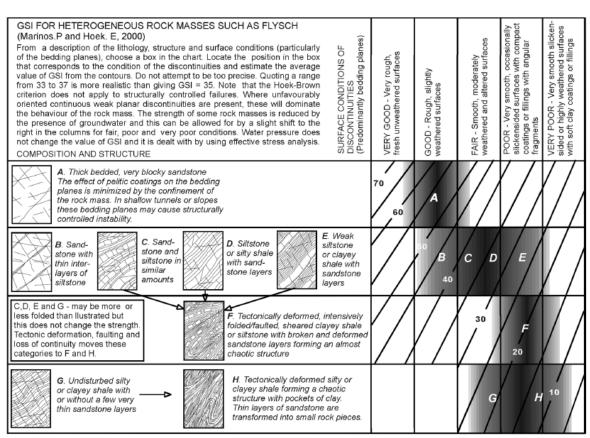
Nombre sans dimension

Indice GSI et qualité du massif rocheux


Valeur GSI	76 – 95	56 – 75	41 – 55	21 – 40	< 20
Qualité du massif rocheux	Très bon (VG)	Bon (G)	Moyen (F)	Mauvais (P)	Très mauvais (VP)

2.6 Classification de Hoek & al.

N/


Prof. M. VIOLAY

2.6 Classification de Hoek & al.

GSI

GSI pour des massifs rocheux hétérogènes tels que des Flysch

2.6 Exemple d'application du GSI

- Massif granitique avec 3 familles de joints,
- RQD moyen de 88%,
- espacement moyen des joints de 0.24 m,
- surfaces des joints généralement irrégulières et rugueuses, jointives et non altérées avec quelques taches,
- surface d'excavation humide, mais sans écoulement
- résistance moyenne à la compression uniaxiale de 160 MPa,
- tunnel excavé à 150 m de profondeur, sans état de contrainte in situ anormalement élevé.

tructure du massif:	Conditions de surface des joints :	

2.7 Autres systèmes de classification

Prof. M. VIOLAY

Autres systèmes de classification des massifs rocheux

- Rock Mass Number N : indice de qualité Q de la roche lorsque SRF vaut 1, i.e. $N = (RQD / J_n) (J_r / J_a) (J_w)$. Cette valeur est utilisée pour caractériser le potentiel de squeezing des massifs rocheux.
- Rock Mass Index RMi = σ_{ci} J_p

 σ_{ci} : résistance à la compression uniaxiale de la roche intacte.

J_p : facteur de réduction représentant l'effet des joints sur la résistance du massif rocheux. Il est fonction de 4 caractéris-tiques des joints : densité, taille, rugosité et degré d'altération. J_p=1 pour la roche intacte, J_p=0 pour les massifs fracturés.

AFTES (Association Française des Tunnels et de l'Espace Souterrain)

■ Normes SIA (Association suisse des ing.) (197 – 198 – 199)

2.8 Exemples d'application

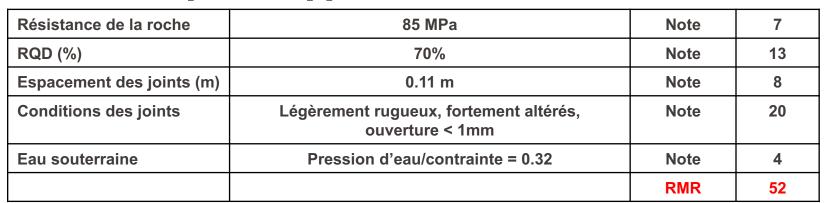
Résistance de la roche	160 MPa	Note	12
RQD (%)	88%	Note	17
Espacement des joints (m)	0.24 m	Note	10
Conditions des joints	Très rugueux, inaltérés, pas de séparation	Note	30
Eau souterraine	mouillé	Note	7
		RMR	76

RQD	88%	RQD	88
Nb de famille de joints	3 familles	J _n	9
Facteur rugosité du joint	rugosité avancée (⇒ ondulation)	J _r	3
Facteur altération du joint	inaltéré, quelques taches	J _a	1
Facteur eau du joint	Seulement mouillé (excavation sèche ou écoulement mineur)	J _w	1
Facteur de réduction de contrainte	$\sigma_{\rm c}/\sigma_{\rm 1}$ = 160/(150×0.027) = 39.5	SRF	1
	(88/9) (3/1) (1/1)	Q	29

Structure du massif: en blocs Conditions de surface des joints : très bonnes GSI = 75	Structure du massif: en blocs	Conditions de surface des joints : très bonnes	GSI = 75±5
---	-------------------------------	--	------------

2.8 Exemples d'application

Prof. M. VIOLA


Cas (b) – Estimation de RMR, Q et GSI

Massif de grès, découpé par 2 familles de joints plus des fractures aléatoires, RQD moyen de 70%, espacement moyen des joints de 0.11 m, surfaces des joints légèrement rugueuses, altérées avec des taches marquées, mais sans présence d'argile, joints généralement en contact avec des ouvertures inférieures au mm, résistance moyenne à la compression uniaxiale de 85 MPa, tunnel excavé à 80 m de profondeur et niveau de la nappe 10 m sous le terrain.

Prof. M. VIOLAY

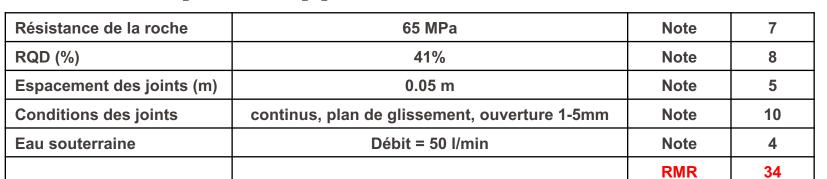
EPFL

2.8 Exemples d'application

RQD	70%	RQD	70
Nb de famille de joints	2 familles plus fractures aléatoires	J_n	6
Facteur rugosité du joint	Légèrement rugueux (⇒ rugosité planaire)	J _r	1.5
Facteur altération du joint	altéré avec des taches marquées, mais sans matériau de remplissage	J_a	2
Facteur eau du joint	70 m hauteur d'eau = 7 kg/cm² = 7 bars	J _w	0.5
Facteur de réduction de contrainte	$\sigma_{\rm c}/\sigma_{\rm 1}$ = 85/(80×0.027) = 39.3	SRF	1
	(70/6) (1.5/2) (0.5/1)	Q	4.4

Structure du massif: en blocs Condi	ions de surface des joints : très bonnes	GSI = 40±5
-------------------------------------	--	------------

2.8 Exemples d'application


Cas (c) – Estimation de RMR, Q et GSI

Massif de silt très fracturé, avec 2 familles de joints et de nombreuses fractures aléatoires, RQD moyen de 41%, joints continus observés en tunnel, surfaces des joints lustrées et ondulées, fortement altérées, joints ouverts de 3 à 5 mm, remplis d'argile, résistance moyenne à la compression uniaxiale de 65 MPa, venues d'eau par 10 m de tunnel d'environ 50 litres/minute, avec débourrage important des matériaux de remplissage des joints. Le tunnel est à 220 m de profondeur.

Prof. M. VIOLAY

2.8 Exemples d'application

RQD	41%	RQD	41
Nb de famille de joints	2 familles et fractures aléatoires	J_n	6
Facteur rugosité du joint	plan de glissement et ondulation	J_r	1.5
Facteur altération du joint	fortement altérées, remplies avec 3-5 mm d'argile	J _a	4
Facteur d'eau du joint	fort écoulement avec débourrage important	J _w	0.33
Facteur de réduction de contrainte	$\sigma_{\rm c}/\sigma_{\rm 1}$ = 65/(220×0.027) = 11	SRF	1
	(41/6) (1.5/4) (0.33/1)	Q	0.85

Structure du massif: en bloc	Conditions de surface des joints : très bonnes	GSI = 20±5
------------------------------	--	------------

2.8 Exemples d'application

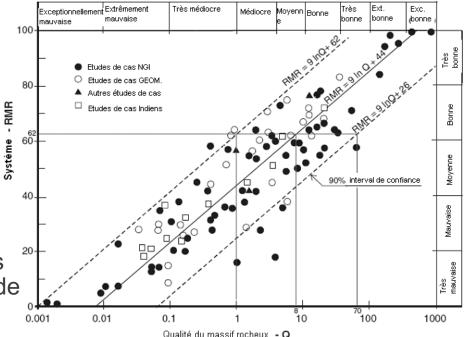
Exemple – Estimation de RMR, Q et GSI

	RMR	Qualité	Q	Qualité	GSI	Qualité
(a) Granite	76	G	29	G	75	G
(b) Grès	52	F	4.4	F	40	F
(c) Silt	34	Р	0.85	VP	20	VP

2.9 Corrélations entre classifications

of. M. VIOLAY

Corrélation entre Q, RMR et GSI


RMR = $9 \ln Q + (44\pm18)$

 $RMR = 13.5 \log Q + 43$

GSI = RMR - 5

(pour GSI > 25)

Cette dernière corrélation n'est pas valable pour des massifs rocheux de très mauvaise qualité (VP)!

Caractérisation et comportement des discontinuités

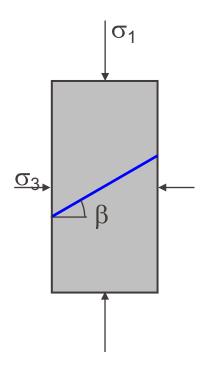
- 1. Introduction
- 2. Classifications
- 3. Propriétés des massifs rocheux
 - 3.1. Critère de résistance de Hoek-Brown généralisé
 - 3.2. Déformabilité
 - 3.3. Massifs rocheux poussants

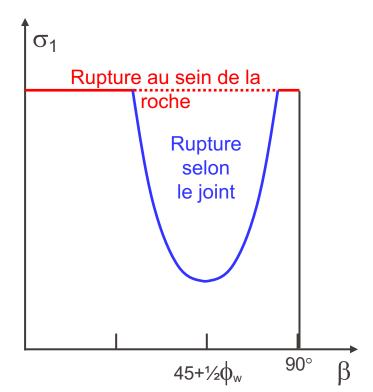
3.1 Classification de Hoek-Brown

rof. M. VIOL

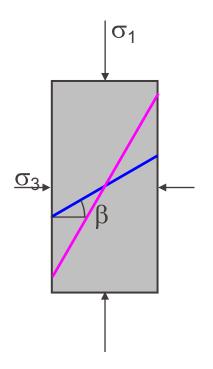
Résistance d'un massif rocheux

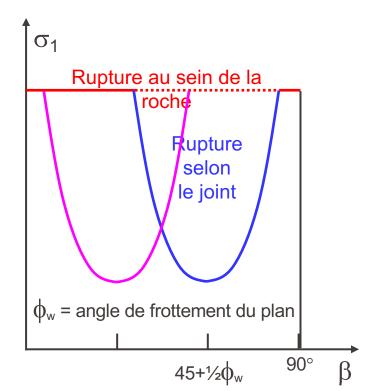
La résistance d'un massif rocheux dépend de:


- la résistance de la matrice rocheuse,
- la résistance au cisaillement des discontinuités,
- le nombre et l'orientation de ces discontinuités.

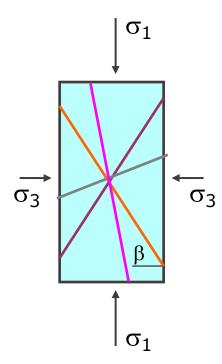

Il en est de même pour les propriétés de déformabilité.

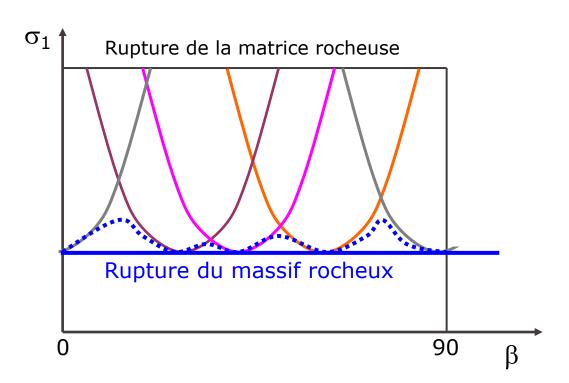
En général, un massif de bonne qualité (roche dure, joints rares et de bonne qualité) a une résistance et un module de déformation plus élevés qu'un massif de qualité médiocre.

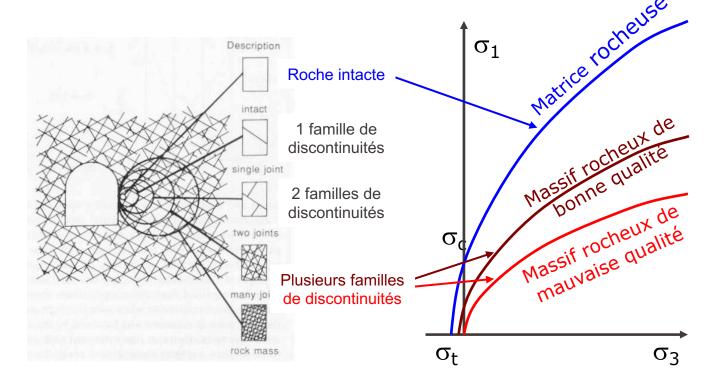

Application du critère de résistance orienté



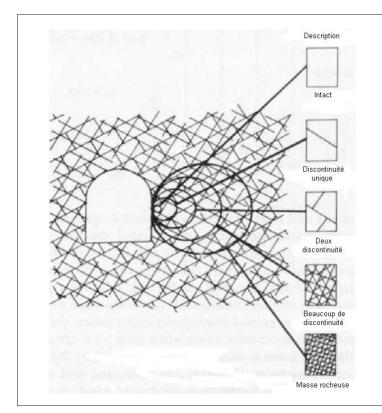
Prof. M. VIOLAY


Application du critère de résistance orienté




Application du critère de Hoek-Brown pour le massif

Prof. M. VIOLAY


Domaine de validité du critère de Hoek-Brown

Prof. M. VIOLAY

3.1 Critère de résistance de Hoek-Brown

Domaine de validité du critère de Hoek-Brown

Application

Critère de Hoek-Brown est applicable- utilise valeurs intact de m et s

Critère de Hoek-Brown pas applicable utilisé un critère anisotrope tel que celui par Amadei (1988)

Critère de Hoek-Brown pas applicable utilisé un critère anisotrope tel que celui par Amadei (1988)

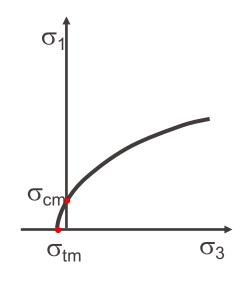
Critère de Hoek-Brown applicable avec prudence pour 4 ou + de discontinuité de résistance uniforme

Critère de Hoek-Brown applicable

f. M. VIOLAY

Critère généralisé de Hoek-Brown pour le massif rocheux

Massif intact


$$\sigma_1 = \sigma_3 + \sqrt{m_i \cdot \sigma_3 \cdot \sigma_{ci} + {\sigma_{ci}}^2}$$

$$\sigma_1 = \sigma_3 + (m_b \cdot \sigma_3 \cdot \sigma_{ci} + s \cdot \sigma_{ci}^2)^a$$

ou

$$\sigma_1 = \sigma_3 + \sigma_{ci} \left(m_b \cdot \frac{\sigma_3}{\sigma_{ci}} + s \right)^a$$

$$\frac{\sigma_1}{\sigma_{ci}} = \frac{\sigma_3}{\sigma_{ci}} + \left(m_b \cdot \frac{\sigma_3}{\sigma_{ci}} + s \right)^a$$

 m_b , set a

des paramètres fonction du type de roche et de la qualité du massif

Prof. M. VIOLA

Critère généralisé de Hoek-Brown pour le massif rocheux

σ_{ci} est la résistance à la compression uniaxiale de la roche intacte. Elle est utilisée dans le critère de Hoek-Brown pour la matrice rocheuse et le massif rocheux.

 σ_1 est la résistance du massif pour une contrainte de confinement σ_3 .

Le critère généralisé dégénère en sa forme originale pour la matrice rocheuse pour s = 1, a = 0.5, $m_b = m_i$.

Les paramètres m_b et s dépendent du type de roche et de la qualité du massif (cf. tableau page suivante). Le paramètre a est généralement égal à 0.5.

Critère de rupture de Hoek-Brown	Roches carbonatées dolomie, calcaire, marbre	Roches argileuses - limon, siltstone, schiste, ardoise	Roches arénacées - grès, quartzite	Roches ignées à grain fin: andésite, dolerite, basalte, rhyolite	Roches méta- morphiques et ignées à grain grossier: gabbro, gneiss, granite
Roche intacte $RMR = 100$, $Q = 500$	m _i = 7.0	m _i = 10.0	m _i = 15.0	m _i = 17.0	m _i = 25.0
	s = 1.0	s = 1.0	s = 1.0	s = 1.0	s = 1.0
Roche de très bonne qualité <i>RMR</i> = 85, <i>Q</i> = 100	m _b = 3.5 s = 0.1	m _b = 5.0 s = 0.1	m _b = 7.5 s = 0.1	m _b = 8.5 s = 0.1	m _b = 12.5 s = 0.1
Roche de bonne qualité	m _b = 0.7	m _b = 1.0	m _b = 1.5	m _b = 1.7	m _b = 2.5
RMR = 65, Q = 10	s = 0.004	s = 0.004	s = 0.004	s = 0.004	s = 0.004
Roche de qualité moyenne RMR = 44, Q = 1.0	m _b = 0.14 s = 0.0001	m _b = 0.20 s = 0.0001	m _b = 0.30 s = 0.0001	m _b = 0.34 s = 0.0001	m _b = 0.50 s = 0.0001
Roche mauvaise	m _b = 0.04	m _b = 0.05	m _b = 0.08	m _b = 0.09	m _b = 0.13
RMR = 23, Q = 0.1	s = 0.00001	s = 0.00001	s = 0.00001	s = 0.00001	s = 0.00001
Roche très mauvaise	$m_b = 0.007$	m _b = 0.01	m _b = 0.015	m _b = 0.017	m _b = 0.025
RMR = 3, Q = 0.01	s = 0	s = 0	s = 0	s = 0	s = 0

Détermination des paramètres pour le massif rocheux

Au fur et à mesure de l'expérience acquise lors de l'utilisation du critère, la définition des paramètres m_b , s et a s'est améliorée.

 m_i est déterminé par essais ($\approx \sigma_{ci}/\sigma_{ti}$) ou à défaut d'après tableau.

Pour un GSI (general strength index) donné, on peut calculer m_b,

$$m_b = m_i \exp [(GSI-100)/28]$$

Pour GSI > 25, soit des massifs de bonne qualité:

$$s = \exp[(GSI-100)/9]$$

$$a = 0.5$$

Pour GSI < 25, soit des massifs de mauvaise qualité:

$$s = 0$$

$$a = 0.65 - GSI/200$$

Note: pour
$$\sigma_3 = 0$$
, $\sigma_{cm} = \sigma_1 = (s \cdot \sigma_{ci}^2)^a$ et donc $\sigma_{cm} = 0$ si $s = 0$

Type de roche		Nom de la roche et valeurs m _i			
	Intrusive	Granite 32±3 Granodiorite 29±3	Diorite 25±5 Dolérite (16±5)	Gabbro 27±3 Norite 22±5	Péridotite (25±5)
lgnée	Extrusive	Rhyolite (16±5)	Andésite 25±5	Basalte (16±5) Diabase (16±5)	Porphyres (20±5)
	Volcanique		Agglomérat (19±3)	Tuff (13±5)	
Sédimentaire	Clastique	Conglomérat (4±18) Breccia (4±16)	Grès 17±4	Siltstone 7±2 Marnes (7±2)	Limon 4±2 Schiste (6±2)
	Carbonatée	Calcaire cristallin (12±3)	Calcaire Sparitique (10±2)	Calcaire Micritique (9±2)	Dolomie (9±3)
aire	Chimique		Gypse 8±2	Anhydrite 12±2	
	Organique			Charbon (8±12)	Craie 7±2
Mé	Feuilletée	Gneiss 28±5	Schiste 12±3	Phyllites (7±3)	Ardoise 7±4
Métamorphique	Légèrement Feuilletée	Migmatite (29±3)	Amphibolite 26±6	être prudent avec	la forte incertitude
ohique	Non Feuilletée	Quartzite 20±3	Meta-grès (19 ±3)	Hornfels (19±4)	Marbre 9±3

Application du critère de Hoek-Brown avec le GSI

Cas (a)
$$\sigma_1 = \sigma_3 + (m_b \sigma_3 \sigma_{ci} + s \sigma_{ci}^2)^a$$

Massif granitique, σ_{ci} = 160 MPa, GSI = 75 m_i pour le granite est de 32.

> $m_b = m_i \exp[(GSI - 100)/28] = 13.1$ $s = \exp[(GSI - 100)/9] = 0.062$ a = 0.5 $\sigma_1 = \sigma_3 + (2096 \,\sigma_3 + 1591)^{0.5}$

Quand $\sigma_3 = 0$, $\sigma_{cm} = 1591^{0.5} = 39.9$ MPa

Application du critère de Hoek-Brown avec le GSI

Cas (c)
$$\sigma_1 = \sigma_3 + (m_b \sigma_3 \sigma_{ci} + s \sigma_{ci}^2)^a$$

Massif de silt, σ_{ci} = 65 MPa, GSI = 20 m_i pour le silt est de 7.

> $m_b = m_i \exp[(GSI - 100)/28] = 0.4$ $s = \exp[(GSI - 100)/9] = 0.00014$ GSI < 25, a = 0.65 - (GSI/200) = 0.55 $\sigma_1 = \sigma_3 + (26 \sigma_3 + 0.59)^{0.55}$

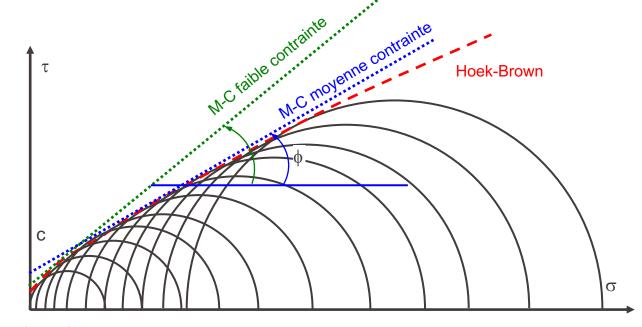
Quand $\sigma_3 = 0$, $\sigma_{cm} = 0.59^{0.55} = 0.75$ MPa

Critères de Hoek-Brown et de Mohr-Coulomb

Il n'existe pas de relation directe entre le critère linéaire M-C et le critère non linéaire H-B.

Si les paramètres de Mohr-Coulomb c et ϕ sont nécessaires pour l'étude d'un ouvrage et/ou pour des modélisations numériques:

- Utiliser directement les résultats d'essais sur le massif (in situ), s'il en existe.
- Utiliser le critère de Hoek-Brown pour générer une série de données σ₁–σ₃ et dessiner les cercles de Mohr. Pour trouver c et ϕ , ajuster ensuite la "meilleure" enveloppe tangente dans le domaine de contraintes pertinent.



M. VIOLAY

σ_3	σ_1	
0	6	
2	12	
4	17	
6	21	
8	25	
10	28	
12	32	
15	37	
20	45	
30	61	
40	75	

$$\sigma_{ci} = 100 \text{ MPa}, \ m_b = 0.3, \ s = 0.004, \ a = 0.5$$

Rayon=
$$\frac{(\sigma_1 - \sigma_3)}{2}$$

Centre =
$$\frac{(\sigma_1 + \sigma_3)}{2}$$

3.2 Déformabilité des massifs rocheux

Prof. M. VIOLA

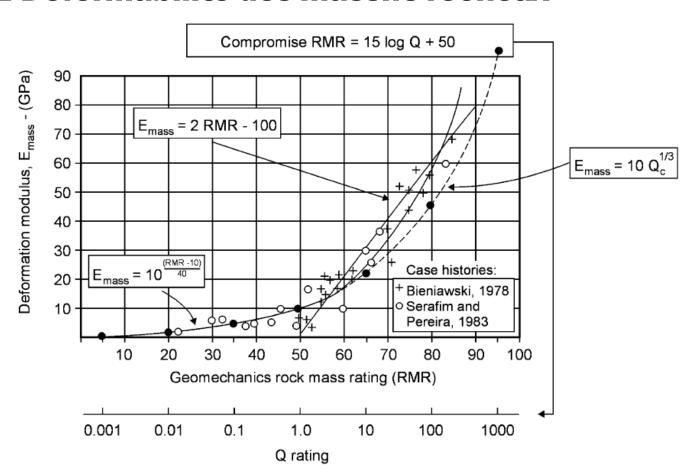
Estimation de la déformabilité à partir de la qualité des massifs rocheux

Le module d'élasticité des massifs rocheux E_m [GPa] peut être estimé à partir des indices RMR ou Q, pour des massifs rocheux de qualité moyenne à bonne:

$$E_{\rm m} = 25 \log_{10} Q$$

pour
$$Q > 1$$

$$E_{\rm m} = 10 (Q \sigma_{\rm ci}/100)^{1/3}$$


$$E_{\rm m} = 2 \, {\rm RMR} - 100$$

$$E_{\rm m} = 10^{(RMR - 10)/40}$$

$$E_{\rm m} = 10^{(15 \log Q + 40)/40}$$

3.2 Déformabilité des massifs rocheux

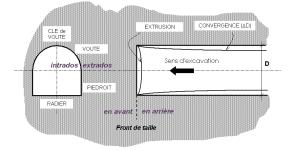
3.2 Déformabilité des massifs rocheux

Estimation de la déformabilité à partir de la qualité des massifs rocheux

Pour les roches fragiles avec σ_{ci} < 100 MPa:

$$E_{\rm m} = (\sigma_{\rm ci} / 100)^{0.5} \cdot 10^{(\rm GSI-10)/40}$$

Cette équation est dérivée de relations entre E_m et RMR d'une part, et entre E_m , Q et σ_{ci} d'autre part; elle permet de refléter l'effet du changement de résistance de la roche.


Prof. M. VIOLA

Comportement des massifs rocheux poussants

Dans les ouvrages souterrains, un terrain dit "poussant" (squeezing) se caractérise par des grandes déformations qui évoluent avec le temps. Elles sont essentiellement associées à du fluage, causé par un excès de contrainte de cisaillement.

Classification des degrés de "contraction" ("serrage") :

- i. Légèrement poussant: fermeture = 1-3% de l'ouverture D
- ii. Modérément poussant: fermeture = 3-5% de D
- iii. Fortement poussant: fermeture > 5% de D

Prof. M. VIOLAY

Comportement des massifs rocheux poussants

Le caractère poussant d'un massif rocheux est typiquement observé par sa déformation plastique à l'intérieur des tunnels.

Le taux de convergence est proportionnel au temps et à la contrainte. Habituellement, le taux est élevé au début (après l'excavation), e.g. convergences de plusieurs cm/jour, puis il se réduit avec le temps. La convergence peut continuer pendant une longue période.

Ce phénomène se produit plutôt dans des tunnels à grande profondeur creusés dans des massifs rocheux de résistance modérée à faible. Cependant, il peut également se présenter dans des tunnels à faible profondeur si la qualité du massif rocheux est médiocre.

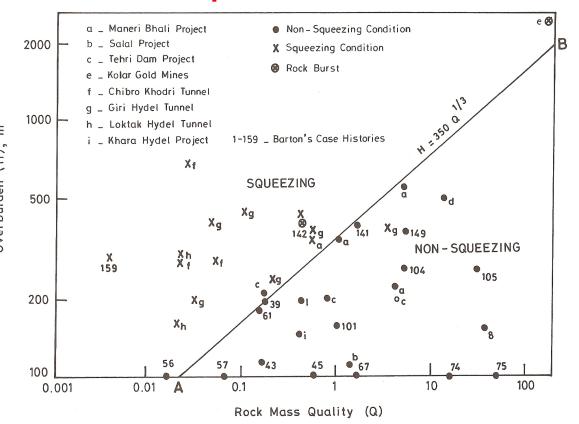
EPFL

3.3 Massifs rocheux poussants

Squeezing au tunnel Yacambu-Quibor au Venezuela

Squeezing à Faido (tunnel de base du Gothard) Image: Heinz Ehrbar

Estimation de la contraction d'après la classification Q


Terrain poussant:

 $H > 350 Q^{1/3}$

Avec H hauteur de couverture [m]

Non poussant:

 $H < 350 Q^{1/3}$

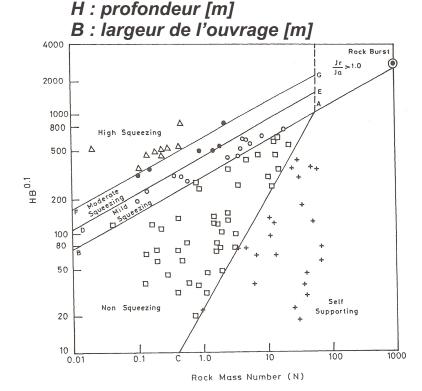
Estimation de la contraction d'après la classification N (Rock Mass Number)

Non poussant:

 $H < (275 N^{1/3}) B^{-0.1}$

Légèrement poussant:

$$H = (275 N^{1/3}) B^{-0.1}$$


$$< (450 N^{1/3}) B^{-0.1}$$

Modérément poussant:

$$+$$
 $< (450 N^{1/3}) B^{-0.1}$ $< (630 N^{1/3}) B^{-0.1}$

Fortement poussant:

$$H > (630 N^{1/3}) B^{-0.1}$$

rof. M. VIOLAY

Estimation des conditions de contraction

Théoriquement, le rocher autour d'un tunnel est considéré comme poussant lorsque:

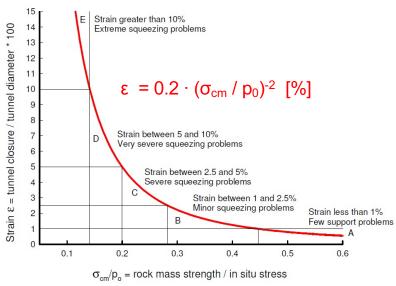
$$\sigma_{\theta}$$
 > résistance = σ_{cm} + σ_{x} · A/2

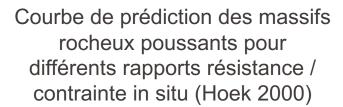
avec:

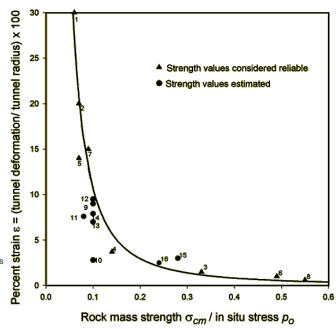
- σ_{θ} la contrainte tangentielle à la paroi du tunnel
- σ_{cm} la résistance à la compression uniaxiale pour le massif rocheux
- σ_x la contrainte in situ dans l'axe du tunnel
- A un paramètre de la roche fonction du frottement

rof. M. VIOLAY

Estimation des conditions de contraction


Non poussant < 1.0	Degré de Serrage	σ_{θ} / σ_{cm} (ISRM)	σ _{cm} / p ₀ (Hoek)
Moyennement poussant 2.0 – 4.0 0.15 – 0.2	Légèrement poussant Moyennement poussant	1.0 - 2.0 $2.0 - 4.0$	0.2 - 0.35 $0.15 - 0.2$


Selon Hoek, le taux de convergence peut être corrélé avec le rapport entre la résistance à la compression uniaxiale du massif rocheux σ_{cm} et les contraintes in situ p_0 . La contraction se produit lorsque ce facteur est inférieur à 0.35 (Hoek 2000).


Prof. M. VIOLAY

EPFL

3.3 Massifs rocheux poussants

Exemples de cas de tunnels poussants comparés avec la courbe de prédiction (Hoek 2000)